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Abstract Using addition theorems for STOs introduced
by the author with the help of complete orthonormal
sets of ya-ETOs (Guseinov II (2003) J Mol Model
9:190–194), where a=1, 0, �1, �2, ..., a large number of
one-range addition theorems for first and second
derivatives of STOs are established. These addition
theorems are especially useful for computation of
multicenter-multielectron integrals over STOs that
arise in the Hartree–Fock–Roothaan approximation
and also in the Hylleraas function method, which play
a significant role for the study of electronic structure
and electron–nuclei interaction properties of atoms,
molecules, and solids. The re-lationships obtained are
valid for arbitrary quantum numbers, screening con-
stants and location of STOs.

Keywords Addition theorems · Slater-type orbitals ·
Multicenter-multielectron integrals

Introduction

For the calculation of multicenter integrals, it is often
necessary to transform Slater-type orbitals (STOs), which
depend upon the coordinates of two particles, in such
a way that the coordinates of the particles appear in a
computationally more convenient form. In most cases this
requires a separation of variables, which can be accom-
plished with the help of so-called addition theorems. In
order to separate the integration variables from those
related to the geometry of the molecule, the earliest
approaches for the evaluation of multicenter integrals
consist of using the relatively complicated addition
theorems of STOs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17] One of the most promising methods for

the evaluation of multicenter-multielectron integrals is the
extension of Fock’s method [18, 19] for the momentum
space solution of the Schr�dinger equation for hydrogen-
like atoms and the theory of hyperspherical harmonics to
the multicenter case by Shibuya and Wulfman [20] (see
also [21, 22, 23]). Unfortunately, the convergence of the
expansion derived by Shibuya and Wulfman is not
guaranteed since the continuum states of the hydrogen
spectrum are not included in the expansion properly.
Recently, in [24] we introduced the new complete
orthonormal sets of ya-ETOs (a=1, 0, �1, �2, ...) for
which the problems with the continuum states do not
occur. The great progress made in both applied mathe-
matics and computer science has led a number of
researchers to focus their efforts on the elaboration of
new approaches directed to computing multicenter inte-
grals over STOs.

To our knowledge, many authors (see [25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35] and references therein) have
considered this problem and, although many improve-
ments have been made in the past few years by the use of
computers, an efficient general program for the calcula-
tion of multicenter integrals over STOs is not yet
available. In previous work [36] addition theorems for
STOs were derived using complete orthonormal sets of
ya-ETOs

The aim of this report is to establish one-range
addition theorems for derivatives of STOs. The addition
theorems for STOs and their derivatives obtained in [36]
and in this work, are useful for the calculation of
electronic structure and electron–nuclei interaction prop-
erties of a molecule when the Hartree–Fock–Roothaan
and Hylleraas approaches are employed.

Addition theorems for derivatives of STOs

We shall use the addition theorems for STOs in the
following form: [36]
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where a ¼ 1; 0; �1; �2; . . . ; ~Rab ¼~ra1 �~rb1 and

cnlm z;~rð Þ ¼ Rn z; rð ÞSlm q;jð Þ ð2Þ

Rn z; rð Þ ¼ 2zð Þnþ1=2 2nð Þ!½ ��1=2rn�1e�zr ð3Þ

Yak;NLM
nlm;n0l0m0 ¼ �1ð ÞLZak;NLM

nlm;n0l0m0 ð4Þ

See Eq. (17) of [36] for the exact definition of the
coefficients Zak;NLM

nlm;n0l0m0 : Here Slm are complex (Slm�Ylm) or
real spherical harmonics determined by the relation

Slm q; fð Þ ¼ Pl mj j cos qð ÞFm fð Þ ð5Þ
where Pl|m| are normalized associated Legendre functions
and for complex spherical harmonics

Fm fð Þ ¼ 1
ffiffiffiffiffi

2p
p eimj ð6Þ

for real spherical harmonics

Fm fð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1þ dm0ð Þ
p

cos mj jf for m > 0
sin mj jf for m < 0:

�

ð7Þ

The derivatives of cnlm z;~rb1ð Þ with respect to Cartesian
coordinates (X,Y,Z) of the nucleus b are defined by

@cnlm z;~rb1ð Þ
@Xi

¼
ffiffiffiffiffi

4p
p

z3=2
lim

k!1

X

k

n0¼1

X

n0�1

l0¼0

X

l0

m0¼�l0
�

�
X

kþn�aþ1

N¼1

X

N�1

L¼0

X

L

M¼�L

Yak;NLM
nlm;n0l0m0c

i�
NLM z;~R
� �

" #

cn0l0m0 z;~ra1ð Þ
ð8Þ

@2cnlm z;~rb1ð Þ
@Xi@Xj

¼
ffiffiffiffiffi

4p
p

z3=2
lim

k!1

X

k

n0¼1

X

n0�1

l0¼0

X

l0

m0¼�l0
�

�
X

kþn�aþ1

N¼1

X

N�1

L¼0

X

L

M¼�L

Yak;NLM
nlm;n0l0m0c

ij�
NLM z;~R
� �

" #

cn0l0m0 z;~ra1ð Þ
ð9Þ

Here i; j ¼ 1; �1; 0; ~R ¼ ~Rab; R ¼ X2 þ Y2 þ Z2
� �1=2

;
X1 ¼ X; X�1 ¼ Y ; X0 ¼ Z and
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¼ @

@Xi
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where

gNL zð Þ ¼ 2zð ÞNþ1=2 2Nð Þ!½ ��1=2 2Lþ 1
4p

� �1=2

ð12Þ

FNLM z;~R
� �

¼ TLM X; Y ;Zð ÞfNL z;Rð Þ ð13Þ

TLM X;Y ; Zð Þ ¼ RL�SLM q;jð Þ; �SLM q; jð Þ

¼ 4p
2Lþ 1

� �1=2

SLM q;jð Þ ð14Þ

fNL z;Rð Þ ¼ RN�L�1e�zR ð15Þ
As can be seen from Eqs. (10), (11), (13), (14) and (15),
for the determination of addition theorems, Eqs. (8) and
(9), we need the derivatives of the functions TLM(X,Y,Z)
and fNL(z,R). Then, using the method set out in our
previous paper (see [37], Eqs. (19), (20) and (21)) for the
determination of the derivatives of the function
TLM(X,Y,Z), we finally find for the derivatives of STOs
in terms of STOs the following relations:
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Here ai
lm;m0 � 0 for l ¼ 0; aij

lm;m0 � 0 for l ¼ 0; 1 and
em ¼ �1: The sign of the symbol em is determined by the
sign of m, i.e. em=+1 for m�0and em=�1 for m<0. It
should be noted that the superscripts i, j, k and k’
occurring in Eqs. (16), (17) and (18) are the indices.

As can be seen from the formulae of this study
obtained by the use of complete orthonormal sets of
Y1

nlm; Y0
nlm; Y�1

nlm; Y�2
nlm; . . .�ETOs; all the one-range

addition theorems of STOs and their derivatives are
expressed through the STOs. Work is in progress for the
calculation of multicenter-multielectron integrals ap-
pearing in the Hartree–Fock–Roothaan theory based on
the one-range addition theorems presented in this
article.

Application

According to the Hellmann–Feynman theorem of elec-
trostatics, [38] the electric field and its gradient induced
at the nuclei of a molecule by electrons can be studied
by differentiating the electronic energy (or the adiabatic
potential function) with respect to Cartesian coordinates
of the nuclei. The values of these derivatives at the
nuclei are very sensitive to minor errors in the electronic
energy of a molecule. Thus, the use of the Hylleraas
electronic correlation approach in the Hartree–Fock–
Roothaan theory for the study of electron–nuclei inter-
action properties would be desirable since it is capable
of producing highly accurate results for the adiabatic
potential function of a molecule. Then, the required
electronic energies for the N-electron atomic and mo-
lecular systems can be expressed through the matrix
elements of the Hartree–Fock–Roothaan equations and
the following multicenter-multielectron correlation in-
tegrals (see Eq. (6) of [36]).

Iac;bd;gh;...;ef
p1p01;p2p02;p3p03;...;ptp0t ;t
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where 2 < t < N; pi � nilimi; p0i � n0il
0
im
0
i; t � uus; p �

nlm and Ôt h;~r123...tð Þ is the t-electron correlation operator
(See Eq. (1) of [36]). The derivatives of these functions
with respect to the Cartesian coordinates of the nucleus b
are determined by
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where p0 � n0l0m0:The derivatives ci�
NLM z;~Rdb

� �

and cij
NLM

z;~Rdb

� �

occurring in these equations can be determined by
the use of addition theorems, Eqs. (16) and (17).

In [36], we established the general formulae for the
multicenter t-electron correlation integrals of Yukawa-
like central and noncentral interaction potentials, Eq. (23),
in terms of two- and three-center overlap integrals. Thus,
the multicenter-multielectron integrals and their deriva-
tives, Eqs. (23), (24) and (25), are determined solely from
the two- and three-center overlap integrals over STOs.

The results of calculation for the three-center overlap
integrals Sacb (see Eqs. (31) and (32) of [36]) with a
Pentium III 800-MHz computer (using Turbo Pascal 7.0)
are shown in Table 1. The comparative values obtained
from the expansions in terms of complete orthonormal
sets of y0-ETOs and y1-ETOs are given in this table. As
can be seen from the table, the computation time and
accuracy of the computer results for different expansion
formulae are satisfactory.
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Table 1 Comparison of methods of computer three-center overlap integrals Sacb (in a.u.): N=15

n l m z n’ l’ m’ z’ m’ n’ s’ z’ Rbc qbc jbc

1 0 0 5.6 2 1 0 2.3 2 1 0 4.2 0.7 360 40
1 0 0 7.5 1 0 0 5.2 1 0 0 3.4 0.5 90 80
2 1 0 3.7 2 1 0 1.5 1 0 0 3.3 1.2 135 100
2 1 0 4.3 2 1 0 2.1 2 1 1 4.3 0.6 180 140

Rca qca jca a=0 a=�1 CPU (ms)

0.7 180 120 4.8588666043E�01 4.8588586165E�01 13.6
1.1 225 120 1.5142553575E�01 1.5142552710E�01 9.2
0.8 270 72 1.3668666543E�01 1.3670021222E�01 16.7
0.6 315 90 1.3784469477E�01 1.3784371500E�01 19.1
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